NVIDIAの研究チームは、1対の「Generative Adversarial Network」(GAN:敵対的生成ネットワーク)と教師なし学習を組み合わせて、人工知能(AI)の訓練時間を短縮できる画像変換ネットワークを開発した。
NVIDIAは米国時間12月3日に投稿したブログ記事で、異なるデータセットによる訓練を受けた2つのGANが「latent space assumption(潜在空間推測)」を共有し、画像データを一方のGANからもう一方のGANに受け渡すことで新しい画像の生成を可能にする仕組みを説明している。
「教師なし学習におけるGANの利用は、目新しいことではない。だが、NVIDIAの研究は、やや曇った空の下でうっそうと茂った木の葉が作る影を再現するなど、他を大きく上回る成果を達成した」とNVIDIAは述べている。
また、ネットワークを訓練する際に、データのラベル付けに必要となる時間を短縮できるといったメリットがもたらされるという。
「自動運転車のみを考えても、訓練用のデータを一度取得すれば、晴れ、曇り、雪、雨、夜間など、さまざまな仮想条件でシミュレーションできる」とNVIDIAは説明している。
NVIDIAはその例として、冬に撮られた写真を使ってその夏の風景を「推測によって画像生成」した写真や、飼い猫の画像を使ってライオンやトラやピューマの画像を生成した写真を公開している。
この記事は海外CBS Interactive発の記事を朝日インタラクティブが日本向けに編集したものです。
CNET Japanの記事を毎朝メールでまとめ読み(無料)
ものづくりの革新と社会課題の解決
ニコンが描く「人と機械が共創する社会」
ZDNET×マイクロソフトが贈る特別企画
今、必要な戦略的セキュリティとガバナンス