###
機械学習の前処理に関する次の記述のうち、誤っているものはどれか。
① カテゴリ変数のエンコーディングとは、文字のaを数値の0、bを1、cを2のようにカテゴリ変数を数値に変換する処理をいう。
② One-hotエンコーディングでは、たとえば、テーブル形式のデータのカテゴリ変数の列について、取り得る値の分だけ列を増やして、各行の該当する値の列のみに1を、それ以外の列には0を入力するように変換する処理をいう。
③ 特徴量の正規化とは、たとえば、ある特徴量の値が2桁の数値(数十のオーダ)、別の特徴量の値が4桁の数値(数千のオーダ)のような場合、後者のオーダの特徴量が重視されやすくなるため、尺度を揃える処理をいう。
④ 分散正規化とは、特徴量の平均が1、標準偏差が0となるように特徴量を変換する処理であり、標準化やz変換と呼ばれることもある。
⑤ 最小最大正規化とは、特徴量の最小値が0、最大値が1を取るように特徴量を正規化する処理であり、scikit-learnでは、preprocessingモジュールのMinMaxScalerクラスを用いて実行することができる。
解説と回答は以下をご覧ください
リンク
御社のプレスリリース・イベント情報を登録するには、ZDNet Japan企業情報センターサービスへのお申し込みをいただく必要がございます。詳しくは以下のページをご覧ください。